Purified self-amplified spontaneous emission (pSASE) free-electron lasers with slippage-boosted filtering

نویسندگان

  • Dao Xiang
  • Yuantao Ding
  • Zhirong Huang
  • Haixiao Deng
چکیده

We propose a simple method to significantly enhance the temporal coherence and spectral brightness of a self-amplified spontaneous emission (SASE) free-electron laser (FEL). In this purified SASE (pSASE) FEL, a few undulator sections (called slippage-boosted section) resonant at a subharmonic of the FEL radiation are used in the middle stage of the exponential growth regime to amplify the radiation while simultaneously reducing the FEL bandwidth. In this slippage-boosted section, the average longitudinal velocity of electrons is reduced, which effectively increases the FEL slippage length that allows the radiation fields initially far apart to create phase relation, leading to n times increase in FEL cooperation length, where n is the ratio of the resonant wavelength of the slippage-boosted section to that of the original FEL radiation. The purified radiation, as a seed with improved temporal coherence, is further amplified to saturation in the undulator sections tuned to the FEL wavelength. Using the linac coherent light source II (LCLS-II) parameters as an example, we show that with the proposed configuration the temporal coherence and spectral brightness of a SASE FEL can be significantly enhanced. This scheme may be applied to many SASE FEL light sources to enhance the FEL performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ginger Simulations of Short-pulse Effects in the Leutl Fel

While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon ...

متن کامل

New Developments on Free Electron Lasers Based on Self-amplified Spontaneous Emission

After a brief introduction to the basic concept of Free Electron Lasers operating in the Self-Amplified Spontaneous Emission (SASE) mode, the paper presents the rapid progress achieved during the past 3 years in successfully proving this FEL process at shorter and shorter wavelengths, meanwhile reaching 80 nm. The technical challenges are discussed to be overcome in building FEL facilities for ...

متن کامل

Characteristics of Dual Amplified Spontaneous Emission from MEH-PPV Solutions

We report the observations of dual wavelength amplified spontaneous emission from the solutions of a conjugated polymer poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) in Tetrahydrofuran and 1, 2 Dichlorobenzene. We have prepared MEH-PPV using a modified procedure and purified several times in each step, the material offers low molecular weight, low polydispersity index an...

متن کامل

On the Importance of Electron Beam Brightness in High Gain Free Electron Lasers

Linear accelerators delivering high brightness electron beams are essential for driving short wavelength, high gain free-electron lasers (FELs). The FEL radiation output efficiency is often parametrized through the power gain length that relates FEL performance to electron beam quality at the undulator. In this review article we illustrate some approaches to the preliminary design of FEL linac-...

متن کامل

Recent Progress in High-gain Fel Theory

High-gain free electron lasers (FEL) are being developed as extremely bright x-ray sources of a next-generation radiation facility. In this paper, we review the basic theory and the recent progress in understanding the startup, the exponential growth and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission (SASE). We will also discuss how the FEL performa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012